Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition

نویسندگان

  • Makoto Sakai
  • Norihide Kitaoka
  • Kazuya Takeda
چکیده

To improve speech recognition performance, feature transformation based on discriminant analysis has been widely used to reduce the redundant dimensions of acoustic features. Linear discriminant analysis (LDA) and heteroscedastic discriminant analysis (HDA) are often used for this purpose, and a generalization method for LDA and HDA, called power LDA (PLDA), has been proposed. However, these methods may result in an unexpected dimensionality reduction for multimodal data. It is important to preserve the local structure of the data when reducing the dimensionality of multimodal data. In this paper we introduce two methods, locality-preserving HDA and locality-preserving PLDA, to reduce dimensionality of multimodal data appropriately. We also propose an approximate calculation scheme to calculate sub-optimal projections rapidly. Experimental results show that the locality-preserving methods yield better performance than the traditional ones in speech recognition. key words: speech recognition, feature extraction, multidimensional signal processing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear maximum likelihood feature transformation for speech recognition

Most automatic speech recognition (ASR) systems use Hidden Markov model (HMM) with a diagonal-covariance Gaussian mixture model for the state-conditional probability density function. The diagonal-covariance Gaussian mixture can model discrete sources of variability like speaker variations, gender variations, or local dialect, but can not model continuous types of variability that account for c...

متن کامل

Evaluation of Combinational Use of Discriminant Analysis-Based Acoustic Feature Transformation and Discriminative Training

To improve speech recognition performance, acoustic feature transformation based on discriminant analysis has been widely used. For the same purpose, discriminative training of HMMs has also been used. In this letter we investigate the effectiveness of these two techniques and their combination. We also investigate the robustness of matched and mismatched noise conditions between training and e...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Class definition in discriminant feature analysis

The aim of discriminant feature analysis techniques in the signal processing of speech recognition systems is to find a feature vector transformation which maps a high dimensional input vector onto a low dimensional vector while retaining a maximum amount of information in the feature vector to discriminate between predefined classes. This paper points out the significance of the definition of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 93-D  شماره 

صفحات  -

تاریخ انتشار 2010